X-Ray Crystal Structure of a New Red, Monoclinic Form of Cyclo-octaselenium, Se₈

By Olav Foss* and VITALIJUS JANICKIS

(Department of Chemistry, University of Bergen, Bergen, Norway)

Summary Red monoclinic prisms, shown by X-ray structure analysis to be an allotrope of cyclo-octaselenium but different from α - and β -monoclinic selenium, crystallized from a solution of dipiperidinotetraselane in carbon disulphide.

THE X-ray structures of the two crystalline forms of red selenium,¹ α - and β -monoclinic selenium, both varieties of cyclo-octaselenium, have been reported.^{2,3} We have encountered, and determined the X-ray crystal structure of, a new form of red selenium, also monoclinic, and also a variety of cyclo-octaselenium which we have named γ -monoclinic selenium.

Finely powdered dipiperidinotetraselane⁴ dissolves readily in CS₂. Solutions of 0.50 or 0.25 g in 50 ml, at room temperature, gradually become orange-red, and crystals of selenium separate out. The crystals, collected after *ca*. 1 h were mostly six-sided plates which were shown by X-ray photography to be α -monoclinic selenium, but each sample contained some well-formed, long prisms which, from X-ray photographs, were different from any known form of selenium (or sulphur). Seeding of the solution with a crushed prism caused rapid crystallization of prisms, with plates in the minority in the product. To finely powdered dipiperidinotetraselane (1 g) was added CS₂ (150 ml) rapidly with stirring to minimize local concentration. After *ca*. 30 min, when the solution was almost opaque, crystallization was initiated by seeding with crushed prisms. About 45 min after seeding, the crystals were filtered off and washed rapidly with a little CS_2 and then ether; yield, 0.36-0.39 g.

The yields of selenium are 73-79% based on the equation: $Se_4(NC_5H_{10})_2 + 2 CS_2 = \frac{3}{8} Se_8 + Se(S_2CNC_5H_{10})_2$.

FIGURE. The eight Ses rings of the unit cell as seen along the c axis. The shortest inter-ring contacts are indicated.

TABLE. Se-Se bond lengths, Se-Se-Se bond angles, and Se-Se-Se/Se-Se-Se dihedral angles

Ring I				Ring 2			
Se Atoms	Bond length/Å	Bond angleª/°	Dihedral angle ^b /°	Se Atoms	Bond length/Å	Bond angleª/°	Dihedral angle ^b /°
(1)-(2)	$2 \cdot 342$	104.4	104.9	(9) - (10)	2.332	105.9	101.3
(2) - (3)	2.331	105.7	99 ·8	(10) - (11)	2.341	108.0	98.1
(3) - (4)	2.327	106.9	98·4	(11) - (12)	2.330	108.7	96 .6
(4) - (5)	2.334	$105 \cdot 9$	102.3	(12) - (13)	2.326	104.3	102.0
(5) - (6)	2.337	107.4	99 ·8	(13) - (14)	2.338	104.5	107.2
(6) - (7)	2.344	105.3	98.2	(14) - (15)	2.343	105.0	$102 \cdot 8$
(7) - (8)	2.337	109.0	100.8	(15) - (16)	2.324	104.5	100.0
(8) - (1)	2.328	$103 \cdot 3$	103.5	(16) - (9)	2.335	104.7	$102 \cdot 2$
Average	2.335(5)	$106 \cdot 0(1 \cdot 2)$	$101 \cdot 0(2 \cdot 0)$	Averagee	2.333(6)	105.7(1.4)	$101 \cdot 3(2 \cdot 3)$

^a At the first atom of bond. ^b At the bond. Zero for planar cis. ^c Values in parentheses are average deviations. Standard deviations in individual bond lengths and bond angles are 0.003 Å and 0.1° , respectively.

 $Se(S_2CNC_5H_{10})_2$ remained in solution and was obtained, together with the rest of the selenium, on evaporation of the mother liquor.

The γ -Se_s crystals, in air at room temperature, appear to be quite stable. Intensities of reference reflections showed no change during X-ray data collection (Siemens diffractometer, Nb-filtered Mo- K_{α} radiation).

Crystal data: Cyclo-octaselenium, third monoclinic form: long, red prisms with rectangular cross-section, extended along the c axis; space group $P2_1/c$ (No. 14), a = 15.018(1), b = 14.713(1), c = 8.789(1) Å, $\beta = 93.61(1)^{\circ}$ [20 °C, $\lambda =$ 0.70926 Å for Mo- $K_{\alpha(1)}$], U = 1938.2 Å³, Z = 64 atoms, $D_{\rm c} = 4.33 \text{ g cm}^{-3}, \ \mu = 323.6 \text{ cm}^{-1}.$ 2527 observed, independent reflections $[I > 3\sigma(I)]$ within $2\theta = 56^{\circ}$. The size of the crystal used was $0.050 \times 0.076 \times 0.254$ mm; absorption corrections ranged from 4.077 to 11.938. The structure was solved by direct and Fourier methods, and refined to R = 0.049.

There are two Se₈ rings in the asymmetric unit. They have the crown form; deviations from regular $\overline{82m}$ symmetry are small but significant. The average bond lengths, bond angles, and dihedral angles (Table) are the same, within error limits, as in α -monoclinic selenium,^{1,2} where the respective values are 2.336 ± 0.007 Å, $105.7 \pm 1.6^{\circ}$, and $101.3 \pm 3.2^{\circ}$, and in β -monoclinic selenium, $1.3 2.337 \pm$ 0.019 Å, $105.7 + 1.0^{\circ}$, and $101.4 + 1.8^{\circ}$.

The shortest contacts between the rings are 3.344(3) Å between Se(5) and Se(7) of rings related through symmetry centres in $\frac{1}{2}$, 0, 0 and $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, and $3\cdot 399(3)$ Å between Se(2) and Se(16) of rings of the asymmetric unit. The former is the shortest known so far in the element $(\alpha$ -monoclinic,^{1,2} 3.476; β -monoclinic,^{1,3} 3.40; trigonal,^{1,6} 3.436 Å). There are, on the average, 30/16 contacts per atom within 3.60 Å.

The three monoclinic forms of cyclo-octaselenium crystallize in the same space group (No. 14); the difference between them lies in the packing of the rings. In the $\alpha\text{-}$ and $\beta\text{-}$ monoclinic forms, Z = 32 atoms, there is only one ring in the asymmetric unit. The volumes per Se₈ ring are, α ,^{1,2} 238.5; β ,^{1,3} 241.0; γ , 242.3 Å³.

We thank the Royal Norwegian Ministry of Foreign Affairs for a Norwegian Government Scholarship (to V. J.).

(Received, 18th August 1977; Com. 867.)

- ² R. D. Burbank, Acta Cryst., 1951, 4, 140; P. Cherin and P. Unger, ibid., 1972, B28, 313.
- ³ R. D. Burbank, Acta Cryst., 1952, 5, 236; R. E. Marsh, L. Pauling, and J. D. McCullough, ibid., 1953, 6, 71.
- ⁴ O. Foss and V. Janickis, preceding communication.
 ⁵ O. Foss, Acta Chem. Scand., 1949, 3, 1385.
- ⁶ P. Cherin and P. Unger, Inorg. Chem., 1967, 6, 1589.

¹ J. Donohue, 'The Structures of the Elements,' Wiley, New York, 1974.